Abstract
Text Summarization produces a shorter version of large text documents by selecting most relevant information. Text summarization systems are of two types: extractive and abstractive. This paper focuses on extractive text summarization. In extractive text summarization, important sentences are selected based on certain important features. The importance of some extractive features is more than the some other features, so they should have the balance weight in computations. The purpose of this paper is to use fuzzy logic and wordnet synonyms to handle the issue of ambiguity and imprecise values with the traditional two value or multi-value logic and to consider the semantics of the text. Three different methods: fuzzy logic based method, bushy path method, and wordnet synonyms method are used to generate 3 summaries. Final summary is generated by selecting common sentences from all the 3 summaries and from rest of the sentences in union of all summaries, selection is done based on sentence location. The proposed methodology is compared with three individual methods i.e. fuzzy logic based summarizer, bushy path summarizer, and wordnet synonyms summarizer by evaluating the performance of each on 95 documents from standard DUC 2002 dataset using ROUGE evaluation metrics. The analysis shows that the proposed method gives better average precision, recall, and f-measure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.