Abstract
Aspergillus flavus is an opportunistic and pathogenic fungus that infects several crops of agricultural importance and under certain conditions may produce carcinogenic mycotoxins. Rising global temperatures, disrupted precipitation patterns and increased CO2 levels that are associated with future climate conditions are expected to impact the growth and toxigenic potential ofA. flavus. Both laboratory and real world observations have demonstrated this potential, especially when examining the effects of water availability and temperature. Recent experiments have also established that CO2 may also be affecting toxin production. The application of current technologies in the field of functional genomics, including genomic sequencing, RNA-seq, microarray technologies and proteomics have revealed climate change-related, abiotic regulation of the aflatoxin cluster and influence on the plant-fungus interaction. Furthermore, elevated CO2 levels have been shown to impact expression of the aflatoxin biosynthetic regulatory geneaflR. The use of functional genomics will allow researchers to better understand the underlying transcriptomic response within the fungus to climate change, with a view towards predicting changes in fungal infection and toxin production associated with climate change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.