Abstract
AbstractPurpose:Pseudomonas aeruginosa is an opportunistic pathogen with biofilm-forming ability, by the virtue of which they can evade the immune response and antimicrobial chemotherapy. Several methods have been designed for the detection of biofilms but require sophisticated instrumentation and expertise. The present study, therefore, used an improvised device, ‘fluorescence foldscope’ which is an origami-based fluorescence microscope as an easy and effective tool to detect biofilm formation. Methodology: Three representatives of P. aeruginosa of clinical origin were taken for the study along with two reference strains PA01 and ATCC27853. The strains were cultured in Luria Bertani (LB) broth with and without carbapenem (imipenem and meropenem) and cephalosporin (ceftazidime, cefotaxime and ceftriaxone) pressure, respectively. The cultures were diluted to 1:100 in LB; seeded with sterile glass slides at 90° angle and incubated for 5 consecutive days. The slides were observed with fluorescence foldscope. Results: Fluorescence emission was observed in two test isolates CD1 and CD2 at 48 and 72 h, respectively, whereas no fluorescence was observed in CD3. The fluorescence observed in the isolates was not affected by 2 μg/ml carbapenem pressure, while with 2 μg/ml ceftazidime stress, a change in fluorescence was observed in CD2 in comparison to the fluorescence observed under normal growth condition. Conclusion: Fluorescence foldscopy is an effective and reliable tool for the detection of biofilm formation in clinical isolates of P. aeruginosa under different laboratory conditions. Biofilm-forming P. aeruginosa worsens the medical condition and is difficult to eradicate. The present study came up with an effective and reliable tool for the detection of biofilm formation in clinical isolates of P. aeruginosa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.