Abstract

BackgroundSuture materials and techniques are frequently evaluated in ex vivo studies by comparing tensile strengths. However, the direct measurement techniques to obtain the tensile forces in canine skin are not available, and, therefore, the conditions suture lines undergo is unknown. A soft elastomeric capacitor is used to monitor deformation in the skin over time by sensing strain. This sensor was applied to a sample of canine skin to evaluate its capacity to sense strain in the sample while loaded in a dynamic material testing machine. The measured strain of the sensor was compared with the strain measured by the dynamic testing machine. The sample of skin was evaluated with and without the sensor adhered.ResultsIn this study, the soft elastomeric capacitor was able to measure strain and a correlation was made to stress using a modified Kelvin-Voigt model for the canine skin sample. The sensor significantly increases the stiffness of canine skin when applied which required the derivation of mechanical models for interpretation of the results.ConclusionsFlexible sensors can be applied to canine skin to investigate the inherent biomechanical properties. These sensors need to be lightweight and highly elastic to avoid interference with the stress across a suture line. The sensor studied here serves as a prototype for future sensor development and has demonstrated that a lightweight highly elastic sensor is needed to decrease the effect on the sensor/skin construct. Further studies are required for biomechanical characterization of canine skin.

Highlights

  • Suture materials and techniques are frequently evaluated in ex vivo studies by comparing tensile strengths

  • The soft elastomeric capacitor (SEC) is shown to track the strain in the canine skin, here reported in terms of the force measured by the dynamic testing machine

  • The flat portion between each peak is due to the out-of-plane deformation in the canine skin that is present during this portion of the loading cycle

Read more

Summary

Introduction

Suture materials and techniques are frequently evaluated in ex vivo studies by comparing tensile strengths. The direct measurement techniques to obtain the tensile forces in canine skin are not available, and, the conditions suture lines undergo is unknown. A soft elastomeric capacitor is used to monitor deformation in the skin over time by sensing strain. This sensor was applied to a sample of canine skin to evaluate its capacity to sense strain in the sample while loaded in a dynamic material testing machine. The measured strain of the sensor was compared with the strain measured by the dynamic testing machine. The sample of skin was evaluated with and without the sensor adhered

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.