Abstract

Soft bioinspired manipulators have a theoretically infinite number of degrees of freedom, providing considerable advantages. However, their control is very complex, making it challenging to model the elastic elements that define their structure. Finite elements (FEA) can provide a model with sufficient accuracy but are inadequate for real-time use. In this context, Machine Learning (ML) is postulated as an option, both for robot modeling and for its control, but it requires a very high number of experiments to train the model. A linked combination of both options (FEA and ML) can be an approach to the solution. This work presents the implementation of a real robot made up of three flexible modules and actuated with SMA (shape memory alloy) springs, the development of its model through finite elements, its use to adjust a neural network, and the results obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.