Abstract
Large diameter integral steel flanges are widely used in many applications in the oil and gas industry. The flanges of nominal pipe sizes, 26-inch and above with ring-joint gaskets as specified in ASME B 16.47 Standard, are used in the offshore applications for the transportation of oil and gas from production facilities. These pipelines require flanged connections at end terminations, mid-line tie-ins and expansion loops. The conventional design of large diameter steel flanges is based on one-dimensional analytical methods similar to the procedure in ASME VIII Boiler and Pressure Vessel Code, Division 1 Appendix 2. The effects of axial forces and bending moments are approximated by calculating an equivalent pressure. This usually results in conservative designs for the large flanges because it estimates the required stud pre-tension based on the assumption that the gasket will be unloaded entirely to a minimum stress, whereas only a small section of the gasket is subjected to low stress. This technical paper presents the quasi-static, nonlinear, and three-dimensional finite element models of large diameter steel flanged joint for the determination of stud pre-tension and change of stud tension under various loading conditions. The finite element analysis results are compared with the results obtained by using the equivalent pressure method and flange “Joint Diagram”.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.