Abstract

ABSTRACT Recycling phosphorus from waste activated sludge has attracted a lot of interest to tackle the problem of phosphorus stocks depletion and the increase in food demand. In this study, the use of fermentation processes was investigated to enhance phosphorus dissolution from waste activated sludge to improve its recycling. Two fermentation processes, bioacidification and dark fermentation, were used on two different sludges fermented with wheat starch syrup in continuous operating conditions. Hydrogen yield from the co-substrate fermentation with waste activated sludge reached 3.9 mmolH2.gCODcosubstrate −1 yield during dark fermentation process and was negligible during bioacidification. Dissolved phosphorus in the waste activated sludge increased by 68% during bioacidification and by 43% during dark fermentation. In both processes, phosphorus dissolution was accompanied by iron, calcium and magnesium dissolution. Results show that fermentation enhances phosphorus dissolution in waste activated sludge to improve its recovery along with hydrogen and organic acids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call