Abstract

We develop an algorithm to generate the set of all solutions to a system of linear Diophantine equations with lower and upper bounds on the variables. The algorithm is based on the Euclid’s algorithm for computing the GCD of rational numbers. We make use of the ability to parametrise the set of all solutions to a linear Diophantine equation in two variables with a single parameter. The bounds on the variables are translated to bounds on the parameter. This is used progressively by reducing a n variable problem into a two variable problem. Computational experiments indicate that for a given number of variables the running times decreases with the increase in the number of equations in the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.