Abstract

Causality algorithms help establish relationships between drug use and adverse event (AE) occurrence. High drug exposure leads to a higher likelihood of an AE being classified as an adverse drug reaction (ADR). However, there is a knowledge gap regarding what concentrations are predictive of ADRs, as this has not been systematically studied. In this work, the Spanish Pharmacovigilance System (SEFV) algorithm was used to define the relationship between the AE occurrence and drug administration in 178 healthy volunteers participating in five desvenlafaxine single-dose clinical trials, a selective serotonin and norepinephrine reuptake inhibitor that may cause dizziness, headache, nausea, dry mouth, constipation and hyperhidrosis. Eighty-three subjects presented 172 AEs that were classified as possible (101), conditional (31), unrelated (24) and probable (16). AUC∞ and Cmax were significantly higher in volunteers with vs. without ADRs (5981.24 ng·h/mL and 239.06 ng/mL and 4770.84 ng·h/mL and 200.69 ng/mL, respectively). Six of 19 subjects with conditional AEs with an SEFV score of 3 points presented an AUC∞ ≥ 6500 ng·h/mL or a Cmax ≥ 300 ng/mL (i.e., above percentile 75) and were summed one point on their SEFV score and classified as "possible" (4 points), improving the capacity of ADR detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.