Abstract

Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) has proven to be a powerful technique revealing complexity and diversity of natural DOM molecules, but its application to DOM analysis in grazing-impacted agricultural systems remains scarce. In the present study, we presented a case study of using ESI-FTICR-MS in analyzing DOM from four headwater streams draining forest- or pasture-dominated watersheds in Virginia, USA. In all samples, most formulas were CHO compounds (71.8–87.9%), with other molecular series (CHOS, CHON, CHONS, and CHOP (N, S)) accounting for only minor fractions. All samples were dominated by molecules falling in the lignin-like region (H/C = 0.7–1.5, O/C = 0.1–0.67), suggesting the predominance of allochthonous, terrestrial plant-derived DOM. Relative to the two pasture streams, DOM formulas in the two forest streams were more similar, based on Jaccard similarity coefficients and nonmetric multidimensional scaling calculated from Bray-Curtis distance. Formulas from the pasture streams were characterized by lower proportions of aromatic formulas and lower unsaturation, suggesting that the allochthonous versus autochthonous contributions of organic matter to streams were modified by pasture land use. The number of condensed aromatic structures (CAS) was higher for the forest streams, which is possibly due to the controlled burning in the forest-dominated watersheds and suggests that black carbon was mobilized from soils to streams. During 15-day biodegradation experiments, DOM from the two pasture streams was altered to a greater extent than DOM from the forest streams, with formulas with H/C and O/C ranges similar to protein (H/C = 1.5–2.2, O/C = 0.3–0.67), lipid (H/C = 1.5–2.0, O/C = 0–0.3), and unsaturated hydrocarbon (H/C = 0.7–1.5, O/C = 0–0.1) being the most bioreactive groups. Aromatic compound formulas including CAS were preferentially removed during combined light+bacterial incubations, supporting the contention that black carbon is labile to light alterations. Collectively, our data demonstrate that headwater DOM composition contains integrative information on watershed sources and processes, and the application of ESI-FTICR-MS technique offers additional insights into compound composition and reactivity unrevealed by fluorescence and stable carbon isotopic measurements.

Highlights

  • Dissolved organic matter (DOM) in streams and rivers is derived from both watershed and aquatic contributions, containing information integrating various biological sources and ecological processes

  • Through comparing FTICR-MS molecular families to fluorescence components derived from excitation emission matrix-parallel factor analysis (EEM-PARAFAC) in 22 freshwater samples, Stubbins and colleagues [8] show that fluorescence components represented less than half of the total number of formulas identified using FTICR-MS, furthering demonstrating the need to apply this technique to various systems for acquiring more robust information about the diversity of natural DOM compounds

  • Based on H/C and O/C ratios, 69.2% to 79.0% of total formulas can be classified as lignin (S3 Appendix), these numbers were perhaps overestimated because many formulas fell in the aliphatic and olefinic region based on AImod (Fig 2), which is a more conservative method to identify aromatic molecules

Read more

Summary

Introduction

Dissolved organic matter (DOM) in streams and rivers is derived from both watershed and aquatic contributions, containing information integrating various biological sources and ecological processes. The chemical characteristics of natural DOM have been analyzed mostly through bulk methods, including element compositions ( DOC:DON molecular ratios), stable carbon isotopes of DOC (δ13C-DOC), and optical properties which can generate a series of source and reactivity indices based on fluorescence and absorption [1,2,3,4]. These techniques capture DOM as a whole but can be biased from averaging DOM constituents of various characteristics. Through comparing FTICR-MS molecular families to fluorescence components derived from excitation emission matrix-parallel factor analysis (EEM-PARAFAC) in 22 freshwater samples, Stubbins and colleagues [8] show that fluorescence components represented less than half of the total number of formulas identified using FTICR-MS, furthering demonstrating the need to apply this technique to various systems for acquiring more robust information about the diversity of natural DOM compounds

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call