Abstract
Plant-emitted volatiles can change after herbivore attack. Monitoring the change in volatile profiles can offer a non-destructive method for determining plant health. An electronic nose (E-nose) equipped with a headspace sampling unit was used to discriminate between volatile profiles emitted by uninfested rice plants and those emitted by rice plants exposed to different numbers of Nilaparvata lugens adults. Principal component analysis (PCA) and linear discriminant analysis (LDA) were used to investigate whether the E-nose was able to distinguish among the different pest treatments. The results indicate that it is possible to separate differently treated rice plants using E-nose signals. The stepwise discriminant analysis (SDA) and a 3-layer back-propagation neural network (BPNN) were developed for pattern recognition models. Calculations show that the discrimination rates were over 92.5% for the training data set and 70% for the testing set using SDA. The correlation coefficient between predicted and real numbers of the pest was found to be over 0.78 using BPNN. Moreover, gas chromatography–mass spectrometry (GC–MS) analysis confirmed the E-nose results. These studies demonstrate that the E-nose technology has clear potential for use as an effective insect monitoring method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.