Abstract

The tongue functions as the primary articulator during the oropharyngeal stages of swallowing. However, detailed descriptions of the kinematics and spatiotemporal variability of tongue behaviors during swallowing are limited to a handful of analyses of data from the X-ray microbeam database. In this article, a new technique, electromagnetic midsagittal articulography (EMMA), is introduced for the high-resolution description of oral articulatory movements during swallowing. Data from 8 healthy, nondysphagic participants are used to illustrate the methods used for data collection and analysis. Movement data were collected for 3 fleshpoint positions on the tongue (blade, body, dorsum) during sequences of repeated discrete water swallows, and were characterized for variables of spatiotemporal variability and 4 discrete kinematic parameters (movement amplitude, peak velocity, duration, and kinematic stiffness). These data show that the movement trajectories measured using EMMA are consistent with descriptions from previous X-ray microbeam studies, indicating that EMMA is a feasible method for the detailed study of tongue movements during swallowing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.