Abstract

The phase-transformation temperatures of a nickel-titanium-based shape-memory alloy (SMA) were initially evaluated under stress-free conditions by the differential scanning calorimetric (DSC) technique. Results show that the phase-transformation temperature is significantly higher for the transition from detwinned martensite to austenite than for that from twinned martensite (or R phase) to austenite. To further examine transformation temperatures as a function of initial state, a tensile-test apparatus with in-situ electrical resistance (ER) measurements was used to evaluate the transformation properties of SMAs at a variety of stress levels and initial compositions. The results show that stress has a significant influence on the transformation of detwinned martensite, but a small influence on the R-phase and twinned martensite transformations. The ER changes linearly with strain during the transformations from both kinds of martensite to austenite. The linearity between the ER and strain during the transformation from detwinned martensite to austenite is not affected by the stress, facilitating application to control algorithms. A revised phase diagram is drawn to express these results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.