Abstract

Oil spills have been one of the greatest environmental problems worldwide. The contamination of soils due to oil spills generates an oil migration down the soil until reaching groundwater. The research focused on remediation of oil-contaminated soils by Ecuadorian natural and acid-surfactant modified zeolites of the Cayo Formation. The natural and modified zeolites were characterized by wavelength dispersive X-ray fluorescence, X-ray powder diffraction, environmental scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, and solid-state magic-angle spinning nuclear magnetic resonance spectroscopy. The natural and modified zeolites were added to an artificially oil-contaminated soil to immobilize and limit the uptake of contaminants by rape through changing soil physical and chemical properties in the pot experiment under greenhouse conditions. Several oil contaminated soil-zeolite mixes were tested in replicated laboratory analyses in terms of their ability to absorb oil. Results indicated that the addition of natural and modified zeolites could increase or decrease soil pH and absorption capacity, with high potential in removing oil from soil. Statistical analysis of the experimental data was performed by the variance test analysis. The absorption process had an efficiency of 46% under well-optimized experimental conditions, with an absorbent dose of 30-M, pH = 3.8 and 15 days of contact time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call