Abstract

The delineation of optimal regimens for combinations of agents is a difficult problem, in part because, to address it, one needs to (i) have effect relationships between the pathogen in question and the drugs in the combination, (ii) have knowledge of how the drugs interact (synergy, antagonism, and additivity), and (iii) address the issue of true between-patient variability in pharmacokinetics for the drugs in the population. We have developed an approach which employs a fully parametric assessment of drug interaction using the equation of W. R. Greco, G. Bravo, and J. C. Parsons (Pharmacol. Rev. 47:331-385, 1995) to generate an estimate of effects for the two drugs and have linked this approach to a population simulator, using Monte Carlo methods, which produce concentration-time profiles for the drugs in combination. This software automatically integrates the effect over a steady-state dosing interval and produces an estimate of the mean effect over a steady-state interval for each simulated subject. In this way, doses and schedules can be easily evaluated. This software allows for a rational choice of dose and schedule for evaluation in clinical trials. We evaluated different schedules of administration for the combination of the nucleoside analogue abacavir plus the human immunodeficiency virus type 1 protease inhibitor amprenavir. Amprenavir was simulated as either 800 mg every 8 h (q8h) or 1,200 mg q12h, each along with 300 mg q12h of abacavir. Both regimens produced excellent effects over the simulated population of 500 subjects, with average percentages of maximal effect (as determined from the in vitro assays) of 90.9%+/- 11.4% and 80.9%+/-18.6%, respectively. This difference is statistically significant (P<<0.001). In addition, 68.8 and 46.0% of the population had an average percentage of maximal effect which was greater than or equal to 90% for the two regimens. We can conclude that the combination of abacavir plus amprenavir is a potent combination when it is given on either schedule. However, the more fractionated schedule for the protease inhibitor produced significantly better effects in combination. Clinicians need to explicitly balance the improvement in antiviral effect seen with the more fractionated regimen against the loss of compliance attendant to the use of such a regimen. This approach may be helpful in the preclinical evaluation of multidrug anti-infective regimens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.