Abstract

AbstractEvolutionary algorithms (EAs) have been used extensively for the optimization of water distribution systems (WDSs) over the last two decades. However, computational efficiency can be a problem, especially when EAs are applied to complex problems that have multiple competing objectives. In order to address this issue, there has been a move toward developing EAs that identify near-optimal solutions within acceptable computational budgets, rather than necessarily identifying globally optimal solutions. This paper contributes to this work by developing and testing a method for identifying high-quality initial populations for multiobjective EAs (MOEAs) for WDS design problems aimed at minimizing cost and maximizing network resilience. This is achieved by considering the relationship between pipe size and distance to the source(s) of water, as well as the relationship between flow velocities and network resilience. The benefit of using the proposed approach compared with randomly generating initial popu...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call