Abstract

Distributed acoustic sensing (DAS) via fiber-optic reflectometry techniques is finding more and more applications in recent years. In many of these applications, the position of detected acoustic or seismic sources is defined with a single longitudinal coordinate which specifies the distance between the detection point in the fiber to the DAS interrogator. In this paper we describe a DAS system which is intended to operate in a fluid (air or water) and to detect and localize moving objects, with three spatial coordinates, using the acoustic waves they generate or reflect and their Doppler shifts. The new method uses optical frequency domain reflectometry (OFDR) and lumped Rayleigh reflectors (LRR's) to ensure sufficiently high sensitivity for operation in fluid media. The new method was used to track a narrowband (CW) signal source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call