Abstract

Corneal disease is a major cause of blindness. Transplantation of cadaver-derived corneas (keratoplasty) is still the current therapy of choice; however, the global shortage of donor corneas continues to drive a search for alternatives. To this end, biosynthetic corneal substitutes have recently begun to gain importance. Here, we present a novel method for the generation of a cornea-like tissue (CLT), using corneo-scleral rims discarded after keratoplasty. Type I collagen was polymerized within the corneo-scleral rim, which functioned as a 'host' mould, directing the 'guest' collagen to polymerize into disc-shaped cornea-like material (CLM), displaying the shape, curvature, thickness, and transparency of normal cornea. This polymerization of collagen appears to derive from some morphogenetic influence exerted by the corneo-scleral rim. Once the CLM had formed naturally, we used collagen crosslinking to fortify it, and then introduced cells to generate a stratified epithelial layer to create cornea-like tissue (CLT) displaying characteristics of native cornea. Through the excision and reuse of rims, each rim turned out to be useful for the generation of multiple cornea-shaped CLTs. The approach effectively helps to shorten the gap between demand and supply of CLMs/CLTs for transplantation. We are exploring the surgical transplantation of this CLT into animal eyes, as keratoprostheses, as a precursor to future applications involving human eyes. It is possible to use either the CLM or CLT, for patients with varying corneal blinding diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call