Abstract
Various non-destructive testing and evaluation (NDTE) techniques are in use by the aviation industry. Thermal imaging as an NDTE tool for composite material is becoming an effective methodology. In this research, a direct energy method approach to active thermal imaging is applied with test specimen placed between the heating source and the camera to take only one diagnostics snap per unit area of region of interest (ROI). Purpose of this study is to assess the utility of direct method as a reliable NDTE technique during aerospace inspections as a quick ‘Go / No Go’ tool for the detection of sub-surface delamination in multilayered composite sheets. The research presents a quantitative comparison of temperature profiles as well as qualitative analysis of 2D active infrared thermo graphic testing of glass fiber epoxy to detect sub-surface delamination. The experimental results are in close agreement with the actual locations of delamination in test samples. The technique may serve as a reliable tool to quickly categorize the component under inspection. However, the size of delamination could not be ascertained with acceptable accuracy in this study, possibly due to the spread of epoxy to the delaminated regions during preparation of defective samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.