Abstract

Structure determination at high resolution is actually a difficult challenge for membrane proteins and the number of membrane proteins that have been crystallized is still small and far behind that of soluble proteins. Because of their amphiphilic character, membrane proteins need to be isolated, purified and crystallized in detergent solutions. This makes it difficult to grow the well-ordered three-dimensional crystals that are required for high resolution structure analysis by X-ray crystallography. In this difficult context, growing crystals confined to two dimensions (2D crystals) and their structural analysis by electron crystallography has opened a new way to solve the structure of membrane proteins. However, 2D crystallization is one of the major bottlenecks in the structural studies of membrane proteins. Advances in our understanding of the interaction between proteins, lipids and detergents as well as development and improvement of new strategies will facilitate the success rate of 2D crystallization. This review deals with the various available strategies for obtaining 2D crystals from detergent-solubilized intrinsic membrane proteins. It gives an overview of the methods that have been applied and gives details and suggestions of the physical processes leading to the formation of the ordered arrays which may be of help for getting more proteins crystallized in a form suitable for high resolution structural analysis by electron crystallography.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call