Abstract

ABSTRACT White Portland cement is an ideal choice for producing 3D printed coloured composites due to its inherent whiteness. However, the uncontrollable rheological properties limit the establishment of printed structures and thus affect the mechanical properties. In this study, the polyvinyl alcohol (PVA) and polypropylene (PP) fibres were utilised as reinforcement materials in 3D printed white Portland cement composites (WPCCs) to improve the printability and toughness by controlling creep properties, aiming to build better printed structures. Experimental results show that the addition of PVA and PP fibres effectively improve the creep properties of WPCCs, and printed structures can be well built by controlling creep properties. Specifically, the thixotropy of WPCCs with PVA and PP fibre is improved within specific content ranges of 0∼1% and 0.4∼0.8%, respectively. Compared with reference sample, the flexural strength increases by approximately 148.8% and 90.2% when the PVA and PP fibre contents reach 1.25% and 1%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.