Abstract

Standardized uptake values (SUVs) are the most widely used quantitative imaging biomarkers in PET. It is important to evaluate the variability and repeatability of measured SUVs. Phantom studies seem to be essential for this purpose; however, repetitive phantom scanning is not recommended due to the decay of radioactivity. In this study, we performed count-based image reconstruction to avoid the influence of decay using two different PET/CT scanners. By adjusting the ratio of 18F-fluorodeoxyglucose solution to tap water, a NEMA IEC body phantom was set for SUVs of 4.0 inside six hot spheres. The PET data were obtained using two scanners (Aquiduo and Celesteion; Toshiba Medical Systems, Tochigi, Japan). We set the start time for image reconstruction when the total radioactivity in the phantom was 2.53 kBq/cc, and employed the counts of the first 2-min acquisition as the standard. To maintain the number of counts for each image, we set the acquisition time for image reconstruction depending on the decay of radioactivity. We obtained 50 images, and calculated the SUVmax and SUVpeak of all six spheres in each image. The average values of the SUVmax were used to calculate the recovery coefficients to compare those measured by the two different scanners. Bland-Altman analyses of the SUVs measured by the two scanners were also performed. The measured SUVs using the two scanners exhibited a 10–30% difference, and the standard deviation (SD) of the measured SUVs was between 0.1–0.2. The Celesteion always exhibited higher values than the Aquiduo. The smaller sphere exhibited a larger SD, and the SUVpeak had a smaller SD than the SUVmax. The Bland-Altman analyses showed poor agreement between the SUVs measured by the two scanners. The recovery coefficient curves obtained from the two scanners were considerably different. The Celesteion exhibited higher recovery coefficients than the Aquiduo, especially at approximately 20-mm-diameter. Additionally, the curves were lower than those calculated from the standard 30-min acquisition images. We propound count-based image reconstruction to evaluate the variability and repeatability of measured SUVs. These results are also applicable for the standardization and harmonization of SUVs in multi-institutional studies.

Highlights

  • The standardized uptake value (SUV) is the most widely used quantitative imaging biomarker (QIB) in the field of positron emission tomography (PET)

  • An image-quality, International Electrotechnical Commission (IEC) body phantom of the type described in the National Electrical Manufacturers Association (NEMA) NU-2 2012 Standard [11] was used for the experiments

  • As mentioned in the Methods section, we set the start of image reconstruction at the time when the total radioactivity in the phantom was 2.53 kBq/cc, and used the counts for the first 2-min acquisition period as the standard

Read more

Summary

Introduction

The standardized uptake value (SUV) is the most widely used quantitative imaging biomarker (QIB) in the field of positron emission tomography (PET). This quantitative value has been used to determine and evaluate differential diagnoses, therapeutic effects, and prognostic predictions [1,2,3,4,5]. It is essential to design a method of repetitive phantom scanning that avoids the influence of radioactive decay. We performed this countbased image reconstruction (using a fixed average number of counts per image) instead of time-based image reconstruction (using a fixed acquisition time per image), and evaluated the variability and repeatability of measured SUVs using two different PET/computed tomography (CT) scanners

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call