Abstract

Copper slag is a by-product obtained during matte smelting and refining of copper. The common management options for copper slag are recycling, recovery of metal and production of value-added products. In the present study using copper slag as a filler in glass-epoxy composites, the tensile modulus increased from 8.77 GPa to 9.64 GPa when using up to 10 wt% of copper slag but on further addition of copper slag (up to 20 wt%), the tensile modulus started to decrease down to 7.11 GPa. Similar trends were observed in the case of flexural strength and interlaminar shear strength. With the incorporation of copper slag particles, the impact strength increased about 10-15%. This work includes the processing, characterization and study of the erosion behaviour of a class of such copper slag filled glass-epoxy composites based on Taguchi's experimental approach to characterise erosion behaviour. The results show that peak erosion takes place at an impingement angle of 60 degrees for the unfilled composites whereas for the copper slag filled glass-epoxy composites it occurs at a 45 degrees impingement angle. This paper considers the possible utilisation of copper slag as filler material for the preparation of composite materials and preparation of added-value products such as abrasive tools, cutting tools and railroad ballast.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call