Abstract

The aim of the study was create a new, non-invasive method of assessing the quality of sugar beet topping using computer image analysis and artificial neural networks. In paper was carried out the analysis the methods used so far to topping assessment of roots and analysis of the possibilities of using the new proposed method. Classical methods allow an assessment only after harvest of roots (after pull out roots), and the proposed method enables the assessment before harvesting sugar beets. The study used 50 images of topped sugar beet roots, which have been subjected to computer analysis in order to improve the image contrast and brightness. The image was converted from color to images in grayscale, and was carried out segmentation and morphological transformations. Binary image was used to determine the surface area and root circuit and topping circiut. This information was used as input to the neural network, which was expanded to two features, ie. the ratio of the areas and circuits. On the output of the network was information about the topping in the form 0 and 1. Created neural network MLP 6:6-26-1:1 allowed for a sensitivity analysis, which returned information about two important features independent, ie. the surface area of the root and root surface area to topping. The analysis found that it is possible to use methods of computer image analysis for non-invasive assessment of the quality topping sugar beets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.