Abstract

In 2009, Idaho National Laboratory (INL) transitioned to an external dosimetry program using optically stimulated luminescent (OSL) technology. This process led to the introduction of the Landauer, Inc., nanoDot dosimeter and MicroStar reader to INL's radiological control program. At the time, a small, self-contained, single chip OSL dosimeter that could be easily read in the field was recognized as having many potential applications for a radiological control program. The ability to achieve a realistic extremity-dose estimate in the field shortly following work where significant exposure is expected is a much sought-after capability at INL. It was proposed to employ the Landauer nanoDot dosimeter as a supplemental extremity monitor as an alternative to time-motion dose analyses based on direct radiation measurements, which had proven to be inaccurate and operationally inefficient. Additionally, this process does not involve the nanoDot in the US Department of Energy Laboratory Accreditation Program (DOELAP) process, which significantly reduces operational complexity. A dose conversion value for the nanoDot dosimeter was derived from direct comparisons with a DOELAP-accredited extremity dosimeter. The geometry or placement of the nanoDot relative to the accredited extremity dosimeter was kept as proximate as possible to best replicate the expected results from the accredited extremity dosimeter. Upon implementation, the nanoDot has proven to be effective in providing reasonable and timely extremity-dose estimates for operational control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call