Abstract

The appearance of somaclonal variability induced by in vitro cultivation is relatively frequent and can, in some cases, provide a valuable source of new genetic variation for crop improvement. The cause of this phenomenon remains unknown; however, there are a number of reports suggesting that epigenetics, including DNA methylations, are an important factor. In addition to the non-heritable DNA methylation changes caused by transient and reversible stress-responsive gene regulation, recent evidence supports the existence of mitotically and meiotically inherited changes. The induction of phenotypes via stable DNA methylation changes has occasionally great economical value; however, very little is known about the genetic or molecular basis of these phenotypes. We used a novel approach consisting of a standard MSAP analysis followed by deep amplicon sequencing to better understand this phenomenon. Our models included two wheat genotypes, and their somaclones induced using in vitro cultivation with a changed heritable phenotype (shortened stem height and silenced high molecular weight glutenin). Using this novel procedure, we obtained information on the dissimilarity of DNA methylation landscapes between the standard cultivar and its respective somaclones, and we extracted the sequences and genome regions that were differentially methylated between subjects. Transposable elements were identified as the most likely factor for producing changes in somaclone properties. In summary, the novel approach of combining MSAP and NGS is relatively easy and widely applicable, which is a rather unique feature compared with the currently available techniques in the epigenetics field.

Highlights

  • Epigenetics is a relatively new scientific field that is currently undergoing a meteoric rise

  • Histone modifications are studied by using chromatin immunoprecipitation (ChIP) of associated DNA, followed by amplification of cDNA using polymerase chain reaction (PCR) or whole genome microarray hybridization [2,3,4]

  • The somaclones investigated in this study were likely to show a significant change in their DNA methylation profile when compared with the original cultivars

Read more

Summary

Introduction

Epigenetics is a relatively new scientific field that is currently undergoing a meteoric rise. Chromatin remodeling and direct DNA methylation or demethylation processes act as epigenetic regulators. Both of these pathways are likely directed by small RNAs [1]. To better understand the epigenetic influence on various phenomena, methods for assessing DNA methylation and chromatin modification have been developed. Histone modifications are studied by using chromatin immunoprecipitation (ChIP) of associated DNA, followed by amplification of cDNA using polymerase chain reaction (PCR) or whole genome microarray hybridization [2,3,4]. Used adaptor for rapid library RL8 RL9 RL10 RL11 doi:10.1371/journal.pone.0165749.t002. Imaging and signal processing was competed using the GS Junior gsRunProcessor v3.0 full Processing, shotgun library pipeline

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.