Abstract

This paper was concerned with the current level of progress towards the development of chipless radio frequency identification (RFID) sensors that are capable of sensing strain and temperature. More specifically, it was interested in the possibility that the resulting devices could be used as a passive wireless structural health monitoring (SHM) sensor technology that could be printed in situ. This work contains the development and performance characterization results for both novel strain and novel temperature sensor designs with resulting sensitivities of 9.77 MHz/%ε and 0.88 MHz/°C, respectively. Furthermore, a detailed discussion on the interrogation system required to meet the relevant aerospace sensing requirements was also discussed, and several methods were explored to enhance the multi-sensor support capabilities of this technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.