Abstract

Because the functional form of neuronal nitric-oxide synthase (nNOS) is a homodimer, we investigated whether we could disrupt dimer formation with inactive nNOS chimeras acting as dominant negative mutants. To test this hypothesis, we either expressed the heme and reductase regions of rat nNOS as single domains or produced fusion proteins between the rat nNOS heme domain and various other electron-shuttling proteins. A dominant negative potential of these constructs was demonstrated by their ability to reduce NOS activity when transfected into a cell line stably expressing rat nNOS. In the presence of these nNOS mutant proteins, cellular levels of inactive nNOS monomers were significantly increased, indicating that their mechanism of action is through the disruption of nNOS dimer formation. These dominant negative mutants should prove valuable in analyzing the role of nNOS in biological systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.