Abstract

The parasitic mite Varroa destructor (Acari: Varroidae) is a major cause of overwintering honey bee (Apis mellifera) colony losses in the United States, suggesting that beekeepers must control Varroa populations to maintain viable colonies. Beekeepers have access to several chemical varroacides and nonchemical practices to control Varroa populations. However, no studies have examined large-scale patterns in Varroa control methods in the United States. Here we used responses from 4 yr of annual surveys of beekeepers representing all regions and operation sizes across the United States to investigate use of Varroa control methods and winter colony losses associated with use of different methods. We focused on seven varroacide products (amitraz, coumaphos, fluvalinate, hop oil, oxalic acid, formic acid, and thymol) and six nonchemical practices (drone brood removal, small-cell comb, screened bottom boards, powdered sugar, mite-resistant bees, and splitting colonies) suggested to aid in Varroa control. We found that nearly all large-scale beekeepers used at least one varroacide, whereas small-scale beekeepers were more likely to use only nonchemical practices or not use any Varroa control. Use of varroacides was consistently associated with the lowest winter losses, with amitraz being associated with lower losses than any other varroacide product. Among nonchemical practices, splitting colonies was associated with the lowest winter losses, although losses associated with sole use of nonchemical practices were high overall. Our results suggest potential control methods that are effective or preferred by beekeepers and should therefore inform experiments that directly test the efficacy of different control methods. This will allow beekeepers to incorporate Varroa control methods into management plans that improve the overwintering success of their colonies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call