Abstract

New nanostructured carbons have been developed through pyrolysis of organic aerogels, based on supercritical drying of cellulose acetate gels. These cellulose acetate-based carbon aerogels (CA) are activated by CO 2 at 800 °C and impregnated by PtCl 6 2−; the platinum salt is then chemically or electrochemically reduced. The resulting platinized carbon aerogels (Pt/CA) are characterized with transmission electron microscopy (TEM) and electrochemistry. The active area of platinum is estimated from hydrogen adsorption/desorption or CO-stripping voltammetry: it is possible to deposit platinum nanoparticles onto the cellulose acetate-based carbon aerogel surface in significant proportions. The oxygen reduction reaction (ORR) kinetic parameters of the Pt/CA materials, determined from quasi-steady-state voltammetry, are comparable with that of Pt/Vulcan XC72R. These cellulose acetate-based carbon aerogels are thus promising electrocatalyst support for PEM application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call