Abstract
The catecholamine-sensitive adenylate cyclase system appears to be comprised of at least three components; the beta-adrenergic receptor (R component), the catalytic unit of adenylate cyclase (C component) and a nucleotide regulatory protein (N component), responsible for mediating the effects of guanine nucleotides on the system. Cell fusion techniques were used to investigate the role of these three components in the process of homologous desensitization in the frog erythrocyte. Dicyclohexylcarbodiimide (DCCD) was used to inhibit β-receptor function in one population of frog erythrocytes, whilst phenyl glyoxal was employed to inactivate the N and C components in a second population of frog erythrocytes. Using Sendai virus to fuse the two types of modified cell, heterologous β-adrenergic receptor-adenylate cyclase systems were constructed which contained components from each cell type. When beta receptors from cells previously desensitized to catecholamines were coupled to N-C components derived from fresh erythrocytes, the resulting hybrid exhibited a densitized response to isoproterenol. By contrast, when β-adrenergic receptors from fresh cells were coupled to N-C components derived from desensitized erythrocytes, no decreased responsiveness to isoproterenol was apparent in the hybrid. That this resensitization was the result of the addition of fresh β-adrenergic receptors was demonstrated in a control experiment. Frog erythrocytes were desensitized simultaneously to catecholamines and prostaglandin E 1 and modified with DCCD which inactivates the β-adrenergic receptor but not the prostaglandin receptor. When fresh β-adrenergic receptors were supplied by cell fusion to these doubly desensitized erythrocytes, only the β-adrenergic response was restored to control levels. The response to prostaglandin remained desensitized in the hybrids, indicating that the observed resensitization of catecholamine-stimulated adenylate cyclase activity was specific and was due to the addition of fresh β-adrenergic receptors. These data suggest that in the frog erythrocyte, homologous desensitization is primarily the result of receptor-related alterations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.