Abstract
Physically based continuum creep damage mechanics (CDM) has been reviewed and shown to provide a unifying framework for some seemingly diverse methods of predicting design and remanent creep lifetimes. These methods—theta projection, omega parameter, Larson-Miller parameter, and Robinson’s life fraction rule—exhibit certain strengths in common with CDM, but also weaknesses which CDM identifies and avoids. CDM consists of sets of coupled rate equations for inelastic strain, internal stress, and microstructural evolution (damage) which can then be integrated under boundary conditions appropriate to the test or service operating conditions: constant load/temperature for creep; constant total strain for stress-relaxation, variable stress/temperature, etc. Other state-variable approaches to creep and cyclic plasticity (for example, those due to Bodner, Miller, Chaboche, and Robinson), differ from CDM mainly in concentrating on the primary/secondary stages of creep (or cyclic work-hardening) and/or by their introduction of damage in an empirical Kachanov manner. The application of physically based CDM to LCF/thermal fatigue and its potential for predicting lifetimes of welded joints are also discussed. [S0094-9930(00)00903-3]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.