Abstract

Gene expression studies commonly examine total cellular RNA, which only provides information about its steady-state pool of RNA. It remains unclear whether differences in the steady-state reflects variable rates of transcription or RNA degradation. To specifically monitor RNA synthesis and degradation genome-wide, we developed Bru-Seq and BruChase-Seq. These assays are based on metabolic pulse-chase labeling of RNA using bromouridine (Bru). In Bru-Seq, recently labeled RNAs are sequenced to reveal spans of nascent transcription in the genome. In BruChase-Seq, cells are chased in uridine for different periods of time following Bru-labeling, allowing for the isolation of RNA populations of specific ages. Here we describe these methodologies in detail and highlight their usefulness in assessing RNA synthesis and stability as well as splicing kinetics with examples of specific genes from different human cell lines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.