Abstract
Bacterial nanocellulose (BNC) has attained elevated interest due to its versatile structure and high resistance characteristics. Accordingly, efforts have been made in order to reduce its production costs, such as the employment of its by-products as a nutrient broth to yield the microorganism. Residual brewer's yeast is an excellent recourse, due to its high nutritional value and availability. Therefore, research which aimed to contribute to the development of a low cost, efficient and biosustainable technology for BNC production with Gluconacetobacter hansenii was carried out. BNC was obtained from residual brewer's yeast hydrolysate at pH 7.0 and five days of incubation at 30 °C in static culture. The hydrolysate was characterized by the amount of sugars, fatty acids, total proteins and ash content. Subsequently, BNC obtained was characterized in terms of yield, carbon conversion ratio, hydrodynamic size, crystallinity, morphology, Fourier-transform infrared spectroscopy, and surface analysis. Residual brewer's yeast hydrolysate proved to be efficient in BNC production via gluconeogenesis with consumption of alanine, threonine and glycerol, obtaining 1.9 times the yield of the chemically defined broth adopted as standard. Additionally, properties observed in the obtained BNC were equal to those obtained from conventional chemical medium. The research contributed to bacterial nanocellulose production using by-products from the brewing industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.