Abstract

IntroductionNeurodegenerative disease diagnoses may be supported by the comparison of an individual patient’s brain magnetic resonance image (MRI) with a voxel-based atlas of normal brain MRI. Most current brain MRI atlases are of young to middle-aged adults and parametric, e.g., mean ±standard deviation (SD); these atlases require data to be Gaussian. Brain MRI data, e.g., grey matter (GM) proportion images, from normal older subjects are apparently not Gaussian. We created a nonparametric and a parametric atlas of the normal limits of GM proportions in older subjects and compared their classifications of GM proportions in Alzheimer’s disease (AD) patients.MethodsUsing publicly available brain MRI from 138 normal subjects and 138 subjects diagnosed with AD (all 55–90 years), we created: a mean ±SD atlas to estimate parametrically the percentile ranks and limits of normal ageing GM; and, separately, a nonparametric, rank order-based GM atlas from the same normal ageing subjects. GM images from AD patients were then classified with respect to each atlas to determine the effect statistical distributions had on classifications of proportions of GM in AD patients.ResultsThe parametric atlas often defined the lower normal limit of the proportion of GM to be negative (which does not make sense physiologically as the lowest possible proportion is zero). Because of this, for approximately half of the AD subjects, 25–45% of voxels were classified as normal when compared to the parametric atlas; but were classified as abnormal when compared to the nonparametric atlas. These voxels were mainly concentrated in the frontal and occipital lobes.DiscussionTo our knowledge, we have presented the first nonparametric brain MRI atlas. In conditions where there is increasing variability in brain structure, such as in old age, nonparametric brain MRI atlases may represent the limits of normal brain structure more accurately than parametric approaches. Therefore, we conclude that the statistical method used for construction of brain MRI atlases should be selected taking into account the population and aim under study. Parametric methods are generally robust for defining central tendencies, e.g., means, of brain structure. Nonparametric methods are advisable when studying the limits of brain structure in ageing and neurodegenerative disease.

Highlights

  • Neurodegenerative disease diagnoses may be supported by the comparison of an individual patient’s brain magnetic resonance image (MRI) with a voxel-based atlas of normal brain MRI

  • For approximately half of the Alzheimer’s disease (AD) subjects, 25–45% of voxels were classified as normal when compared to the parametric atlas; but were classified as abnormal when compared to the nonparametric atlas

  • MD) data were acquired through the National Institutes of Health (NIH) Grant U01 AG024904, National Institute on Aging, National Institute of Biomedical Imaging and Bioengineering, Abbott, Alzheimer’s Association, Alzheimer’s Drug Discovery Foundation, Amorfix Life Sciences Ltd., AstraZeneca, Bayer HealthCare, BioClinica, Inc., Biogen Idec Inc., Bristol-Myers Squibb Company, Eisai Inc., Elan Pharmaceuticals Inc., Eli Lilly and Company, F

Read more

Summary

Introduction

Neurodegenerative disease diagnoses may be supported by the comparison of an individual patient’s brain magnetic resonance image (MRI) with a voxel-based atlas of normal brain MRI. Most current brain MRI atlases are of young to middle-aged adults and parametric, e. G., mean ±standard deviation (SD); these atlases require data to be Gaussian. Brain MRI data, e.g., grey matter (GM) proportion images, from normal older subjects are apparently not Gaussian. We created a nonparametric and a parametric atlas of the normal limits of GM proportions in older subjects and compared their classifications of GM proportions in Alzheimer’s disease (AD) patients. Data Availability Statement: Data are available from the publicly accessible ADNI (adni.loni.usc.edu) and OASIS (http://www.oasis-brains.org/) studies

Methods
Results
Subjects
Brain MRI acquisition and initial processing
Spatial normalisation to standard space
Assessing voxel-wise GM distributions
Parametric and nonparametric atlases of normal ageing GM proportion
Atlas based assessment
Voxel-wise GM distributions in the normal atlas subjects
Parametric and nonparametric atlases of GM proportion
Parametric versus nonparametric atlas classifications in AD patients
Simulated non-Gaussian data
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call