Abstract
China declared a long-term commitment at the United Nations General Assembly (UNGA) in 2020 to reduce CO2 emissions. This announcement has been described by Reuters as “the most important climate change commitment in years.” The allocation of China’s provincial CO2 emission quotas (hereafter referred to as quotas) is crucial for building a unified national carbon market, which is an important policy tool necessary to achieve carbon emissions reduction. In the present research, we used historical quota data of China’s carbon emission trading policy pilot areas from 2014 to 2017 to identify alternative features of corporate CO2 emissions and build a backpropagation neural network model (BP) to train the benchmark model. Later, we used the model to calculate the quotas for other regions, provided they implement the carbon emission trading policy. Finally, we added up the quotas to obtain the total national quota. Additionally, considering the perspective of carbon emission terminal, a new characteristic system of quota allocation was proposed in order to retrain BP including the following three aspects: enterprise production, household consumption, and regional environment. The results of the benchmark model and the new models were compared. This feature system not only builds a reasonable quota-related indicator framework but also perfectly matches China’s existing “bottom-up” total control quota approach. Compared with the previous literature, the present report proposes a quota allocation feature system closer to China’s policy and trains BP to obtain reasonable feature weights. The model is very important for the establishment of a unified national carbon emission trading market and the determination of regional quotas in China.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.