Abstract
Bone morphogenetic proteins (BMPs) have been shown to have significant osteoinductive activity in numerous in vitro and in vivo assay systems, and BMP-2 and BMP-7 are currently being evaluated in human clinical studies. In the spinal region, BMPs have been shown to promote spinal arthrodesis at a higher rate than autologous bone alone. The delivery of BMPs via direct or ex vivo gene therapy techniques is also currently being evaluated and has shown promise in several mammalian models. The present study was designed to evaluate the efficacy of the use of direct, percutaneous BMP-9 adenoviral gene therapy to promote spinal fusion in the rodent. Each animal was injected with 7.5x10(8) pfu of a BMP-9 adenoviral vector in the lumbar paraspinal musculature and allowed to survive 16 weeks. Computerized tomography studies and histological analysis demonstrated massive bone induction at the injection sites, clearly leading to solid spinal arthrodesis, without evidence of pseudarthroses, nerve root compression, or systemic side effects. The results of this study strongly support the advancement of BMP gene therapy techniques toward clinical use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.