Abstract

.The reliability of lichenometric dating is dependent on a good understanding of lichen growth rates. The growth rate of lichens can be determined from direct measurement of growing lichens or indirect methods by measuring lichens growing on surfaces of known age, although there are limitations to both approaches. Radiocarbon (14C) analysis has previously been used in only a handful of studies to determine lichen growth rates of two species from a small area of North America. These studies have produced mixed results; a small amount of carbon turnover appears to occur in one of the species (Caloplaca spp.) previously investigated introducing uncertainty in the growth rate, while much higher carbon cycling occurred in another (Rhizocarpon geographicum), making the 14C approach unsuitable for estimating growth rates in the species most commonly used in lichenometric dating. We investigated the use of bomb‐14C analysis to determine the growth rate of a different crustose species (Pertusaria pseudocorallina) common to Northern Europe. 14C‐based growth rates were considerably higher than growth rates of morphologically similar species based on direct measurement made at locations nearby and elsewhere in the UK. This observation strongly suggests that a degree of carbon turnover probably occurs in Pertusaria pseudocorallina, and that bomb‐14C analysis alone cannot be used to determine lichen age or absolute growth rates in this lichen species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.