Abstract

A simplex in a projective space of dimension n is expressed by a matrix of order n + 1, where each row represents the homogeneous coordinates of a vertex of the simplex with respect to a reference frame. In the present study, a block Toeplitz matrix is used to express a simplex which forms a Mobius pair along with the reference simplex. A pair of mutually inscribed, circumscribed tetrahedrons is called a Mobius pair. The existence of such pairs of simplexes in higher-dimensional (odd) projective spaces is already established. In the present study an existence of an infinite chain of simplexes in a five-dimensional projective space is established where any two simplexes from the chain form a Mobius pair in some order of their vertices. This is studied with the help of powers of a block Toeplitz matrix. Also, attempt has been made to generalize this result to 2n + 1-dimensional projective space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.