Abstract

Vero cells, a cell line established from the kidney of the African green monkey (Cercopithecus aethiops), were cultured in F-10 Ham medium supplemented with 10% fetal calf serum at 37 degrees C on membranes of poly(L-lactic acid) (PLLA), poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and their blends in different proportions (100/0, 60/40, 50/50, 40/60, and 0/100). The present study evaluated morphology of cells grown on different polymeric substrates after 24 h of culture by scanning electron microscopy. Cell adhesion was also analyzed after 2 h of inoculation. For cell growth evaluation, the cells were maintained in culture for 48, 120, 240, and 360 h. For cytochemical study, the cells were cultured for 120 or 240 h, fixed, processed for histological analysis, and stained with Toluidine blue, pH 4.0, and Xylidine ponceau, pH 2.5. Our results showed that cell adhesion was better when 60/40 and 50/50 blends were used although cells were able to grow and proliferate on all blends tested. When using PLLA/PHBV (50/50) slightly flattened cells were observed on porous and smooth areas. PLLA/PHBV (40/60) blends presented flattened cells on smooth areas. PLLA/PHBV (0/100), which presented no pores, also supported spreading cells interconnected by thin filaments. Histological sections showed that cells grew as a confluent monolayer on different substrates. Cytochemical analysis showed basophilic cells, indicating a large amount of RNA and proteins. Hence, we detected changes in cell morphology induced by alterations in blend proportions. This suggests that the cells changed their differentiation pattern when on various PLLA/PHBV blend surfaces.

Highlights

  • A research area that has recently received increased attention is tissue engineering, in which functional tissue is restored from native or synthetic sources by using engineering principles

  • The 60/40 and 50/50 poly(L-lactic acid) (PLLA)/PHBV blends proved to be more receptive to cell interaction (P < 0.05)

  • In the PLLA/PHBV (60/40) blends we found cells with a growth pattern very similar to that of the former samples, the pores seen in blends were more irregular (Figure 3D)

Read more

Summary

Introduction

A research area that has recently received increased attention is tissue engineering, in which functional tissue is restored from native or synthetic sources by using engineering principles. Biomaterials play an important role working as scaffolds to guide tissue regeneration, releasing drugs and growth factors to stimulate tissue response, or creating a new functional structure when damaged tissue does not regenerate [1,2,3] In this context, a clear understanding of cell responses to the biomaterial used is needed. In many cases, depending on the regenerative capacity of damaged tissues, the use of biodegradable materials is clinically recommended In such situations, there is only a need for the temporary presence of biomaterials to provide support to the damaged area, or substitute it, so as to direct the growth and restoration of tissues [4]. A wide variety of bioabsorbable polymers have been used in biological systems, and polyesters derived from α-hydroxy acids are those most frequently employed [5]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.