Abstract
Deprotection of pyridine N-oxides under mild conditions with an inexpensive and environmentally friendly reducing reagent is an important chemical procedure. The use of biomass waste as the reducing reagent, water as the solvent and solar light as the energy source is one of the most promising approaches with minimal impact on the environment. Therefore, a TiO2 photocatalyst and glycerol are suitable components of this type of reaction. Stoichiometric deprotection of pyridine N-oxide (PyNO) with a minimal amount of glycerol (PyNO:glycerol= 7 : 1) was achieved, with only CO2 being produced as the final oxidation product of glycerol. The deprotection of PyNO was thermally accelerated. Under solar light, the temperature of the reaction system increased to 40-50 °C and PyNO was also quantitatively deprotected, indicating that solar energy, i. e., UV light and thermal energy, can be effectively used. The results provide a new approach in the fields of organic chemistry and medical chemistry using biomass waste and solar light.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.