Abstract

A genetically engineered, bioluminescent strain of Xanthomonas campestris pv. campestris (Xcc) was used to study the effectiveness of plant growth-promoting rhizobacteria (PGPR) as disease control agents. Black-rot-susceptible cabbage plants were wound-inoculated with PGPR and wound- or mist-inoculated with bioluminescent Xcc 10 days later. Growth of the bioluminescent strain in the plants was followed over time with a low-light, charge-coupled device camera. Several PGPR strains effectively reduced growth of the bioluminescent pathogen in the plants when bacteria were introduced into the plant by wound. PGPR inoculation was less effective when bioluminescent bacteria were introduced into the plant by mist inoculation. Little effect on symptom reduction was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.