Abstract
The experiments on high Rydberg states interacting with short electromagnetic pulses were hitherto mainly explained by using numerical integration of the time-dependent Schrodinger equation in a restricted state basis. In this study we apply a different approach based on the Bersons-Kulsh analytical form factor of the short-pulse approximation. This analytical approach is shown to well reproduce the recent experimental results and those of numerical integration of the time-dependent Schrodinger equation both in the case of terahertz half-cycle pulses and optical many-cycle pulses. This fact enables a recommendation of the analytical Bersons-Kulsh form factor as an alternative and efficient method of quantum calculations of electromagnetically induced Rydberg state redistribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.