Abstract
The aim of this study was to use of bacterial cellulose/polypyrrole/TiO2-Ag (BC/PPy/TiO2-Ag) nanocomposite film to detect and measure the growth of 5 pathogenic bacteria. For this purpose, at first, 13 BC/PPy/TiO2-Ag films were fabricated, then bacterial suspensions were prepared according to McFarland standard. The results showed that by increasing the bacterial concentration, the electrical resistance of sensors was decreased and there was a relation between bacterial concentration and bacterial type with electrical resistance change of sensors. The obtained data showed that the sensitivity of the sensors was increased with increasing the concentration of polypyrrole and TiO2-Ag. FT-IR and SEM tests were performed to investigate the interaction between nanoparticles and determine the size of nanoparticles. The BC/PPy/TiO2-Ag biosensors are portable and the response time of these sensors is very short for target analysis. Therefore, these sensors have the potential to improve biological safety as diagnostic tools.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.