Abstract

In the last five decades, attempts have been made to improve rumen fermentation and host animal nutrition through modulation of rumen microbiota. The goals have been decreasing methane production, partially inhibiting protein degradation to avoid excess release of ammonia, and activation of fiber digestion. The main approach has been the use of dietary supplements. Since growth-promoting antibiotics were banned in European countries in 2006, safer alternatives including plant-derived materials have been explored. Plant oils, their component fatty acids, plant secondary metabolites and other compounds have been studied, and many originate or are abundantly available in Asia as agricultural byproducts. In this review, the potency of selected byproducts in inhibition of methane production and protein degradation, and in stimulation of fiber degradation was described in relation to their modes of action. In particular, cashew and ginkgo byproducts containing alkylphenols to mitigate methane emission and bean husks as a source of functional fiber to boost the number of fiber-degrading bacteria were highlighted. Other byproducts influencing rumen microbiota and fermentation profile were also described. Future application of these feed and additive candidates is very dependent on a sufficient, cost-effective supply and optimal usage in feeding practice.

Highlights

  • In the last five decades, attempts have been made to improve rumen fermentation and host animal nutrition through modulation of rumen microbiota

  • New additive candidates from Asian agricultural byproducts have been explored for the use to decrease rumen methane and ammonia, in which in vitro evaluation is often used for initial screening

  • Ruminal abundance of Fibrobacter succinogenes (Fs). succinogenes was 1.3–1.5 times greater in diets supplemented with chickpea husk or lablab bean husk than the control diet. These results suggest that bean husk supplementation might improve the nutritive value of a rice straw diet by stimulating the growth of fibrolytic bacteria, represented by F. succinogenes

Read more

Summary

Introduction

In the last five decades, attempts have been made to improve rumen fermentation and host animal nutrition through modulation of rumen microbiota. As CNSL administration did not adversely affect digestibility in either cattle or sheep, this agricultural byproduct can be recommended for use as a potent methane-inhibiting and propionate-enhancing agent, due to its effects on rumen microbiota.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.