Abstract
Abstract. The artificial seedling assay method has been used in several tropical and temperate forests to estimate seedling damage and subsequent mortality due to non-trophic micro-disturbances such as litterfall and trampling. However, there has been no evidence presented to support the assumption that artificial seedling damage correlates with natural seedling mortality. In this study we evaluated the use of artificial seedlings in five New Zealand forests by comparing damage rates of artificial seedlings with damage and mortality rates of an equal number of selected natural seedlings. A total of 1200 artificial, and 1200 natural seedlings were monitored monthly for two years. Litterfall damage rates of natural seedlings were correlated with those of artificial seedlings. However, there was no relationship found between artificial and natural seedling damage due to animals, or between artificial seedling damage and natural seedling mortality for either cause. Artificial seedlings should not therefore be used to estimate seedling mortality due to non-trophic microdisturbance. Monitoring natural seedlings enabled non-trophic animal damage to be readily detected and provided additional information on animal-plant interactions. The value of using artificial seedlings is that they provide a measure of the litterfall disturbance potential that is independent of the patchy distribution of natural seedlings within safe sites, and independent of species specific resistance to damage. They therefore provide an indication of the selective pressure on seedlings due to litterfall and are useful for comparing the relative ‘safety’ of different forests and microsites. Monitoring natural seedlings provides a measure of the damage and mortality due to litterfall for a specific seedling size class. Concurrently monitoring artificial and natural seedlings for litterfall disturbance provides more information than the same effort expended on either method alone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.