Abstract
An investigation into the use of software-based artificial neural networks for the electrocardiographic (ECG) detection of inferior myocardial infarction was made. A total of 592 clinically validated subjects, including 208 with inferior myocardial infarction, 300 normal subjects, and 84 left ventricular hypertrophy cases, were used in this study. A total of 200 ECGs (100 from patients with inferior myocardial infarction and 100 from normal subjects) were fed to 66 supervised feedforward neural networks for training using a back-propagation algorithm. QRS and ST-T wave measurements were used as the input parameters for the neural networks. The best performing network using QRS measurements only and the best using QRS and ST-T data were selected by assessing a test set of 292 ECGs (108 from patients with inferior myocardial infarction, 84 from patients with left ventricular hypertrophy, and 100 from normal subjects). These two networks were then implanted separately into the deterministic Glasgow program for further study. After the implementation, it was found necessary to include a small inferior Q criterion to improve the specificity of reporting inferior myocardial infarction, thereby producing a small loss of sensitivity as compared with use of the network alone. The use of an artificial neural network within the deterministic logic performed better than either alone in the diagnosis of inferior myocardial infarction, producing a 20% gain in sensitivity with 2% loss in overall specificity compared with the original deterministic logic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.