Abstract
Artificial neural network models are developed to predict strong ground motion duration of sub- duction events for soft and firm soils. To train the artificial neural network a database with a total of 3153 seismic records with two horizontal components for interplate and inslab earthquakes is employed. The principal component method is used to carry out a dimensionality reduction of the input parameters to develop the artificial neural network models. The predicted values of the strong ground motion duration trained by the artificial neural network models are compared with those estimated with empirical expressions. In general, the strong ground motion duration predicted with the artificial neural networks follows the same tendency of that calculated with the empirical equa- tions, although in some cases, the strong ground motion duration predicted by using the artificial neural network models presents sudden changes in its behavior. For this reason, it is recommended to carry out several verifications of the trained artificial neural network models before using them for further engineering applications, for example the simulation of synthetic records or the evaluation of seismic damage indices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.