Abstract

The aim of this study was to develop an artificial neural network (ANN) model to predict recurrent lumbar disk herniation (LDH). An ANN model and a logistic regression model were used to predict recurrent LDH. The age, sex, duration of symptoms, smoking status, recurrent LDH, level of herniation, type of herniation, sports activity; occupational lifting, occupational driving, duration of symptoms, visual analog scale (VAS), the Zung Depression Scale (ZDS), and the Japanese Orthopaedic Association (JOA) Score, were determined as the input variables for the established ANN model. The Macnab classification, VAS, and JOA were used for outcome assessment. ANNs on data from LDH patients, who underwent surgery, were trained to predict LDH using several input variables. The patients were divided into a recurrent LDH group (R group) and a primary LDH group (P group). Sensitivity analysis was applied to identify the relevant variables. The receiver-operating characteristic curve, accuracy rate of predicting, and Hosmer-Lemeshow statistics were considered for evaluating the 2 models. A total of 402 patients were categorized into training, testing, and validation data sets consisting of 201, 101, and 100 cases, respectively. The recurrence rate was 8.7%, and the median time to recurrence was 26.2 months (SD=4 mo). The VAS of leg/back pain and JOA were improved at 1-year follow-up (P<0.05) and no significant difference was observed between the 2 groups. Surgical successful outcome was categorized as: excellent, 31.1%; good, 44.3%; fair, 18.9%; and poor, 5.7% at 1-year follow-up. Compared with the logistic regression model, the ANN model was associated with superior results: accuracy rate, 94.1%; Hosmer-Lemeshow statistic, 40.2%; and area under the curve, 0.83% of patients. The findings show that an ANNs can be used to predict the diagnostic statues of recurrent and nonrecurrent group of LDH patients before the first or index microdiscectomy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.