Abstract
Growth of and bacteriocin production by Streptococcus macedonicus ACA-DC 198 were assessed and modeled under conditions simulating Kasseri cheese production. Controlled fermentations were performed in milk supplemented with yeast extract at different combinations of temperature (25, 40, and 55 degrees C), constant pH (pHs 5 and 6), and added NaCl (at concentrations of 0, 2, and 4%, wt/vol). The data obtained were used to construct two types of predictive models, namely, a modeling approach based on the gamma concept, as well as a model based on artificial neural networks (ANNs). The latter computational methods were used on 36 control fermentations to quantify the complex relationships between the conditions applied (temperature, pH, and NaCl) and population behavior and to calculate the associated biokinetic parameters, i.e., maximum specific growth and cell count decrease rates and specific bacteriocin production. The functions obtained were able to estimate these biokinetic parameters for four validation fermentation experiments and obtained good agreement between modeled and experimental values. Overall, these experiments show that both methods can be successfully used to unravel complex kinetic patterns within biological data of this kind and to predict population kinetics. Whereas ANNs yield a better correlation between experimental and predicted results, the gamma-concept-based model is more suitable for biological interpretation. Also, while the gamma-concept-based model has not been designed for modeling of other biokinetic parameters than the specific growth rate, ANNs are able to deal with any parameter of relevance, including specific bacteriocin production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.